Frequency-dependent information flow from the entorhinal cortex to the hippocampus.
نویسندگان
چکیده
Storage and retrieval of information in the hippocampus is dependent on information transfer from the entorhinal cortex (EC). We studied how the separate pathways from layer II and III of the EC to the hippocampus are selected for information transfer during repetitive synaptic stimulation. Intracellular recordings were made from EC layer II and III projection cells in horizontal combined EC-hippocampal slices. Synaptic responses to stimulation of deep layers or the lateral EC with stimulus intensities approximately 70% of that required to elicit an action potential were analyzed during short trains of repetitive stimulation. The threshold intensities for induction of action potentials were in layer II cells 8.2 +/- 3.8 (SE) V, significantly larger than 4.4 +/- 1.5 V in type 1, and 5.2 +/- 3.3 V in type 2 layer III cells, respectively. During repetitive subthreshold stimulation with frequencies below 5 Hz the pathway from the EC layer II remained quiet and was preferentially activated with stimulation frequencies above 5 Hz. In contrast the EC layer III cells responded preferentially to low stimulus frequencies (<10 Hz) and became strongly inhibited when synaptically stimulated with frequencies above 10 Hz. Interestingly during stimulus frequencies between 5 and 10 Hz the likelihood that both layer II and III cells fire was large. Thus a frequency switch operates in the entrohinal cortex regulating output of layer II and III cells to the hippocampus. We suggest that such frequency dependent regulation of information flow presents a new principle of neuronal information processing.
منابع مشابه
The effect of Gallic acid on prenatal entorhinal cortex and CA1/CA3 hippocampal areas in trimethyltin intoxication rat
Background: Prenatal intoxication with trimethyletin (TMT) induces widespread neuronal death in the central nervous system by inducing oxidative stress. The aim of this study was to evaluate the antioxidant effect of gallic acid (GA) on the neuronal density of the entorhinal cortex, hippocampal pyramidal cells and oxidative stress parameters in the fetal forebrain following TMT intoxication. ...
متن کاملRAPID COMMUNICATION Frequency-Dependent Information Flow From the Entorhinal Cortex to the Hippocampus
Gloveli, Tengis, Dietmar Schmitz, Ruth M. Empson, and Uwe are rhythmically active during exploratory behavior in the Heinemann. Frequency-dependent information flow from the entotheta rhythm range (Mitchell and Ranck 1980). The hipporhinal cortex to the hippocampus. J. Neurophysiol. 78: 3444–3449, campus also exhibits rhythmic oscillatory field potentials 1997. Storage and retrieval of informat...
متن کاملمدل شبکه ی عصبی از نگاشت سلولهای شبکه به سلولهای مکانی
Abstract: Medial entorhinal cortex is known to be the hub of a brain system for navigation and spatial representation. These cells increase firing frequency at multiple regions in the environment, arranged in regular triangular grids. Each cell has some properties including spacing, orientation, and phase shift of the nodes of its grid. Entorhinal cortex is commonly perceived to be the major in...
متن کاملCalcium Channel Blockade Ameliorates Endoplasmic Reticulum Stress in the Hippocampus Induced by Amyloidopathy in the Entorhinal Cortex
Entorhinal cortex (EC) is one of the first Entorhinal cortex (EC) is one of the first cerebral regions affected in Alzheimer’sdisease (AD). The pathology propagates to neighboring cerebral regions through a prion-likemechanism. In AD, intracellular calcium dyshomeostasis is associated with endoplasmicreticulum (ER) stress. This study was designed to examine hippocampal ER stre...
متن کاملبررسی و مقایسه اثرات ضد تشنجی گیرندهای آدنوزینی A1 در ناحیه CA1 هیپوکمپ بر شدت تشنجهای ایجاد شده به روش کیندلینگ الکتریکی آمیگدال و قشر انتورینال موش صحرایی
Introduction & Objective: In the CNS, adenosine is known to suppress repetitive neuronal Firing, suggesting a role as an endogenous modifier of seizures. Indeed, intracerebral adenosine concentrations rise acutely during seizure activity and are thought to be responsible for terminating seizures and establishing a period of post-ictal refractoriness. However, it is unclear whether this suppre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 78 6 شماره
صفحات -
تاریخ انتشار 1997